Destructive Mother Nature on Earth

Wind: Scientist defines wind as air in motion. The term is usually applied to the natural horizontal motion of the atmosphere; motion in a vertical, or nearly vertical, direction is called a current. Winds are produced by differences in atmospheric pressure, which are primarily attributable to differences in temperature. Variations in the distribution of pressure and temperature are caused largely by unequal distribution of heat from the sun, together with differences in the thermal properties of land and ocean surfaces. When the temperatures of adjacent regions become unequal, the warmer air tends to rise and flow over the colder, heavier air. Winds initiated in this way are usually greatly modified by the earth's rotation. Winds may be classified into four major types: the prevailing winds, the seasonal winds, the local winds, and the cyclonic and anticyclone winds.

Rain: Scientists define rain as precipitation of liquid drops of water. Raindrops generally have a diameter greater than 0.5 mm (0.02 in). They range in size up to about 3 mm (about 0.13 in) in diameter, and their rate of fall increases, up to 7.6 m (25 ft) per sec with their size. Larger drops tend to be flattened and broken into smaller drops by rapid fall through the air. The precipitation of smaller drops, called drizzle, often severely restricts visibility but usually does not produce significant accumulations of water.

Amount or volume of rainfall is expressed as the depth of water that collects on a flat surface, and is measured in a rain gauge to the nearest 0.25 mm (0.01 in). Rainfall is classified as light if not more than 2.5 mm (0.10 in) per hr, heavy if more than 7.50 mm (more than 0.30 in) per hr, and moderate if between these limits.

Snow: which to a certain limit is a natural beauty itself. Beyond limit this natural beauty becomes destructive when it crosses the limit. Too much windy sometimes bring destruction. Too much rain brings floods and too much snow stop commute.

Hurricanes: Scientists define hurricanes name applied to migratory tropical cyclones that originate over oceans in certain regions near the equator, and particularly to those arising in the West Indian region, including the Caribbean Sea and the Gulf of Mexico. Hurricane-type cyclones in the western Pacific are known as typhoons.

Cyclones: According to scientists cyclone in strict meteorological terminology, an area of low atmospheric pressure surrounded by a wind system blowing, in the northern hemisphere, in a counterclockwise direction. A corresponding high-pressure area with clockwise winds is known as an anticyclone. In the southern hemisphere these wind directions are reversed. Cyclones are commonly called lows and anticyclones highs. The term cyclone has often been more loosely applied to a storm and disturbance attending such pressure systems, particularly the violent tropical hurricane and the typhoon, which center on areas of unusually low pressure.

Tornados: Scientists define tornados as violently rotating column of air extending from within a thundercloud down to ground level. The strongest tornadoes may sweep houses from their foundations, destroy brick buildings, toss cars and school buses through the air, and even lift railroad cars from their tracks. Tornadoes vary in diameter from tens of meters to nearly 2 km (1 mi), with an average diameter of about 50 m (160 ft). Most tornadoes in the northern hemisphere create winds that blow counterclockwise around a center of extremely low atmospheric pressure. In the southern hemisphere the winds generally blow clockwise. Peak wind speeds can range from near 120 km/h (75 mph) to almost 500 km/h (300 mph). The forward motion of a tornado can range from a near standstill to almost 110 km/h (70 mph).

A tornado becomes visible when a condensation funnel made of water vapor (a funnel cloud) forms in extreme low pressures, or when the tornado lofts dust, dirt, and debris upward from the ground. A mature tornado may be columnar or tilted, narrow or broad—sometimes so broad that it appears as if the parent thundercloud itself had descended to ground level. Some tornadoes resemble a swaying elephant's trunk. Others, especially very violent ones, may break into several intense suction vortices—intense swirling masses of air—each of which rotates near the parent tornado. A suction vortex may be only a few meters in diameter, and thus can destroy one house while leaving a neighboring house relatively unscathed.

Earthquakes: Scientists define earthquakes as shaking of the Earth’s surface caused by rapid movement of the Earth’s rocky outer layer. Earthquakes occur when energy stored within the Earth, usually in the form of strain in rocks, suddenly releases. This energy is transmitted to the surface of the Earth by earthquake waves. The study of earthquakes and the waves they create is called seismology (from the Greek seismos, “to shake”). Scientists who study earthquakes are called seismologists.

The destruction an earthquake causes depends on its magnitude and duration, or the amount of shaking that occurs. A structure’s design and the materials used in its construction also affect the amount of damage the structure incurs. Earthquakes vary from small, imperceptible shaking to large shocks felt over thousands of kilometers. Earthquakes can deform the ground, make buildings and other structures collapse, and create tsunamis (large sea waves). Lives may be lost in the resulting destruction.

| Home | About Me | Holidays | Contact

Copyright © 2007,